การใช้ SPSS วิเคราะห์ผลการทดลองแบบ T-test ด้านการเพาะเลี้ยงสัตว์น้ำ
สามารถ เดชสถิตย์
ศูนย์วิจัยและพัฒนาประมงชายฝั่งกระบี่
สำนักวิจัยและพัฒนาประมงชายฝั่ง กรมประมง
ตุลาคม 2551
สามารถ เดชสถิตย์
ศูนย์วิจัยและพัฒนาประมงชายฝั่งกระบี่
สำนักวิจัยและพัฒนาประมงชายฝั่ง กรมประมง
ตุลาคม 2551
คำนำ
ในการวิเคราะห์ข้อมูลแบบ t-test ของ SPSS มีอยู่ 3 แบบ หลัก คือ 1)one-sample t-test 2) Independent-samples t-test และ 3) paired-sample t-test ซึ่งการวางแผนการทดลองทางการเพาะเลี้ยงสัตว์น้ำมีบ่อยครั้งที่มีการวางแผนการทดลองและวิเคราะห์แบบ t-test นั่นคือในการวางแผนการทดลองที่มี 1 หรือ 2 ทรีตเมนต์ (แต่โดยมากมักเป็น 2 ทรีตเมนต์) ซึ่งวิธีการวิเคราะห์ผลการทดลองแต่ละวิธีขึ้นอยู่กับลักษณะการวางแผนการทดลอง ในตอนนี้จะได้อธิบายว่า แต่ละวิธีวิเคราะห์มีลักษณะข้อมูลเป็นอย่างไร ต้องตั้งสมมติฐานอย่างไร ขั้นตอนวิเคราะห์เป็นอย่างไร และการแปรผลการวิเคราะห์อย่างถูกต้องตามจุดประสงค์การทดลองหรือตามสมมติฐานการทดลอง
อย่างไรก็ตาม หากใครขี้เกียจอ่านมาก แค่อยากวิเคราะห์เองให้ได้โดยไม่ต้องไปขอช่วยคนอื่น ก็อยากบอกว่า ส่วนใหญ่ที่เราทำ ๆ งานวิจัยทางการเพาะเลี้ยงกัน หากมี 2 ทรีตเมนต์ และวางแผนแบบสุ่ม ก็ต้องวิเคราะห์แบบ Independent-samples t-test ก็ข้ามไปที่ขั้นตอนการใช้คำสั่งของวิธีดังกล่าวได้เลย ไม่ต้องอ่านอย่างอื่นให้ปวดหัว ง่ายดีมั๊ย หากทำหลาย ๆ ครั้งจนจำขั้นตอนได้ (ซึ่งมีไม่กี่ขั้นตอน) ตดยังไม่ทันหายเหม็นคุณก็วิเคราะห์ข้อมูลเสร็จซะแล้ว
วิธีการวิเคราะห์แบบ T-test ใน SPSS
ในโปรแกรม SPSS มีวิธีวิเคราะห์ผลการทดลองแบบ t-test อยู่ 3 แบบ คือ One-sample t-test, Independent-samples t-test และ Paired-sample t-test
1. One-sample T-test หรือ การทดสอบค่าเฉลี่ยของประชากรกลุ่มเดียว หรือทรีตเมนต์เดียว
การทดสอบเกี่ยวกับค่าเฉลี่ยของประชากรกลุ่มเดียว หรือทรีตเมนต์เดียว เป็นการทดสอบว่าค่าเฉลี่ยของประชากร หรือ ทรีตเมนต์ (อาจได้มาจากการสำรวจแบบสุ่มหรือได้จากการทดลอง) นั้นแตกต่างจากค่าเฉลี่ยที่กำหนดไว้ในสมมติฐานอย่างมีนัยสำคัญหรือไม่
วิธีนี้หากเป็นการทดลองก็คือ เป็นการทดลองที่มีเพียงทรีตเมนต์เดียว แต่มีหลายซ้ำเหมือนการทดลองทั่ว ๆ ไป จุดประสงค์ก็เพื่อนำผลหรือค่าเฉลี่ยที่ได้ไปเทียบกับค่าในทางทฤษฎี หรือ เทียบกับค่าที่กำหนด
ตัวอย่าง มีการศึกษาว่า อัตราการเติบโตจำเพาะของปลาเก๋าดอกแดงในธรรมชาติมีค่าเป็น 2.00 %/วัน (ค่าสมมติ) เราต้องการทดสอบว่า วิธีการที่เราเลี้ยงอยู่ในบ่อทำให้อัตราการเจริญเติบโตจำเพาะแตกต่างกับธรรมชาติหรือไม่ เราก็ทดลองเลี้ยงวิธีเดียวกัน 3 ซ้ำ (ยิ่งมากซ้ำก็ยิ่งดี) แล้วนำผลการทดลองคือ อัตราการเจริญเติบโตจำเพาะที่ได้ไปเทียบกับค่าอัตราการเจริญเติบจำเพาะที่รายงานไว้ (2.00%/วัน) ว่าแตกต่างกันหรือไม่อย่างไร
2. Independent-samples T-test การทดสอบความแตกต่างของค่าเฉลี่ยของ 2 ทรีตเมนต์ที่เป็นอิสระกัน
เป็นการทดสอบว่าค่าเฉลี่ยของ 2 ทรีตเมนต์ (2 ประชากร) ที่เป็นอิสระต่อกันนั้น (เนื่องจากวางแผนทดลองแบบสุ่มตลอด) มีค่าเฉลี่ยแตกต่างกันอย่างมีนัยสำคัญหรือไม่ วิธีการนี้ก็คือการออกแบบการทดลองแบบสุ่มตลอด หรือแบบ CRD แต่มีเพียง 2 ทรีตเมนต์ งานวิจัยทางการเพาะเลี้ยงสัตว์น้ำที่มี 2 ทรีตเมนต์ หรือแบบ t-test ส่วนใหญ่ มักวางแผนและวิเคราะห์แบบนี้
ตัวอย่าง การเปรียบเทียบอัตราการเปลี่ยนอาหารเป็นเนื้อของอาหาร 2 สูตร หากต้องการ 3 ซ้ำ ก็จัดหน่วยทดลอง 6 หน่วย สุ่มปลาที่มีลักษณะเหมือน ๆ กันลงตู้ และจัดปัจจัยอื่น ๆ ให้เหมือนกัน แล้วสุ่มว่า 3 หน่วยใดให้อาหาร สูตรที่ 1 อีก 3 หน่วยก็ให้อาหารสูตรที่ 2 เมื่อสิ้นสุดการทดลองก็ทำการเปรียบเทียบว่าอัตราการเปลี่ยนอาหารเป็นเนื้อของอาหารทั้งสองสูตรแตกต่างกันหรือไม่อย่างไร
3. Paired-samples T-test การทดสอบความแตกต่างของค่าเฉลี่ยของ 2 ทรีตเมนต์ที่ไม่เป็นอิสระต่อกัน
เป็นการทดสอบว่าค่าเฉลี่ยของ 2 ทรีตเมนต์ (2 ประชากร) ที่ไม่เป็นอิสระต่อกัน มีค่าเฉลี่ยแตกต่างกันอย่างมีนัยสำคัญหรือไม่ เรียกการทดสอบแบบนี้ว่า Paired-samples T-test หรือ Dependent-samples T-test
ลักษณะข้อมูลที่ใช้การวิเคราะห์แบบ Paired-samples T-test มี 2 แบบใหญ่ ๆ คือ
1. ข้อมูลที่ได้จากการวัดจากกลุ่มตัวอย่างเดียวกัน แต่ทำการวัด 2 ครั้ง เช่น คะแนนวัดก่อนและหลังการอบรมของเกษตรกร ปริมาณเม็ดเลือดขาวของปลาก่อนและหลังการได้รับเชื้อ
2. ข้อมูลจากการออกแบบการวิจัยในลักษณะการจับคู่ (Matched Paired Design) เป็นการวางแผนที่มี 2 ทรีตเมนต์ แต่ทดลองเป็นคู่ ๆ ซึ่งอาจเนื่องมาจากไม่สามารถจัดปัจจัยอื่นที่ไม่ใช่ปัจจัยที่ต้องการทดลองให้เหมือนกันทั้งหมดได้ แต่สามารถจัดเป็นคู่ ๆ ได้ โดยที่คู่หนึ่ง ๆ จะมีปัจจัยอื่น ๆ เหมือนกัน ยกเว้นปัจจัยที่ทดลอง แต่ระหว่างคู่อาจมีปัจจัยอื่น ๆ แตกต่างกันได้ เช่น ขนาดตู้ทดลองไม่เท่ากัน ความเค็มไม่เท่ากัน ขนาดปลาที่ทดลองไม่เท่ากัน ซึ่งลักษณะเช่นนี้เหมือนกับเป็นการทำบล็อค ส่วนจำนวนซ้ำก็คือจำนวนคู่ที่ทดลอง สำหรับค่าที่นำมาเปรียบเทียบกันในทางสถิติคือ ความแตกต่างระหว่างข้อมูลแต่ละคู่
ตัวอย่าง 1 ต้องการศึกษาอัตรารอดของม้าน้ำที่อนุบาลด้วยอาหาร 2 ชนิด แต่เนื่องจากมีม้าน้ำคู่เดียวและแต่ละครอกมีลูกม้าน้ำไม่เพียงพอต่อการทดลองหลาย ๆ ซ้ำ จึงทำการวางแผนทดลองเป็นคู่ ๆ โดยลูกม้าน้ำแต่ละครอกที่ได้จะแบ่งเป็น 2 ชุดเท่า ๆ กัน และให้กินอาหาร 2 ชนิดเพื่อเปรียบเทียบอัตรารอด โดยทำการทดลองกับลูกม้าน้ำ 5 ครอก ติดต่อกัน
ตัวอย่าง 2 ต้องการศึกษาอัตราการเจริญเติบโตของปลาที่เลี้ยงด้วยอาหาร 2 สูตรในระบบปิด ว่าแตกต่างกันหรือไม่อย่างไร แต่มีบ่อระบบปิดเพียง 2 บ่อ ดังนั้นจึงทดลองเลี้ยงปลาครั้งละ 2 บ่อ โดยใช้อาหารบ่อละสูตร เมื่อครบระยะเวลาก็เก็บข้อมูลเป็นคู่ที่ 1 จากนั้นก็เตรียมบ่อและจัดปลาลงเลี้ยงรอบต่อ ๆ ไป จนได้ 5 รอบ (ต้องการ 5 ซ้ำ, ยิ่งซ้ำมาก ก็ยิ่งดี)
ไม่มีความคิดเห็น:
แสดงความคิดเห็น